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Learning to store information over extended time intervals via recurrent backpropagation

takes a very long time,mostly due to insufcient.decaving error back bow. We briehy review
Hochreiter's 199%analysis of this problem,then address it by introducing a novel,efcient,
gradient-based method called #Long Short-Term Memorw” (LSTM) . Truncating the gradient

where this does not do harm,LSTH can learn to bridge minimal time lags in excess of 1000
discrete time steps by enforcing constanterror Pow through #constant error carrousels™within
special units.Multiplicative gate units learn to open and close access to the constant error
bow.LSTH is local in space and time;its computational complexity per time step and weight

is O01).0ur experiments with arti®cial data involve local,distributed, real-valued,and noisy
pattern representations.|n comparisons with RTAL,BPTT, Recurrent Cascade- EDrreIat|un

Elman nets,and Meural Sequence Chunking,LSTM leads to many more successful runs,and

learns much faster.LSTHM also solves complex,arti¥cial long time lag tasks that have never

been solved by previous recurrent network algorithms.

1 INTRODUCT [ 0K

Recurrent networks can in principle use their feedback connections to store representations of
recent input events in form of activations (#short—term memory”,as opposed to #lona—term memory”embodied
by slowly changing weights).This is potentially signi%cant for many applications,

including speech processing, non-Markovian control,and music composition (e.g.,Mozer 1932).

The most widely used algorithms for learning what to put in short-term memory,however, take

too much time or do not work well at all,especially when minimal time |ags between inputs and
corresponding teacher signals are long.&lthoush theoretically fascinating.existing methods do

not provide clear practical advantages over,say,backprop in feedforward nets with limited tine
windows. This paper will review an analysis of the problem and suggest a remedy.

The problem.With conventional #Back-Propagation Through Time"(BPTT.e.qg..Williams

and Zipser 1992, Werbos 1933)or $Feal-Timne Pecurrent Learning”(RTAL.e.g..Pobinson and

Fallside 1987).error signals #bowing backwards in timetend to either (1Jblow up or (2Jvanish:
the temporal evolution of the backpropagated error exponential lv depends on the size of the
weights (Hochreiter 19391).Case (1)may lead to oscillating weights,while in case (2)learning to
bridae long time lags takes a prohibitive amount of time,or does not wark at all [see section 3).
The remedy.This paper presents #Long Short-Term Memory”(LSTM),a novel recurrent

network architecture in conjunction with an appropriate garadient-based learning algorithm, LSTH

is designed to overcome these error back-Jow problems. |t can learn to bridse time intervals in
excess of 1000steps even in case of noisy, incompressible input sequences,without loss of short
time lag capahilities.This is achieved by an eBcient,aradient-based algorithm for an architecture
|Benforcing constant (thus neither exploding nor vanishinglerrar bow through internal states of
special units (provided the gradient computation is truncated at certain architecture-speci®c points
Ithis does not adect lona—term error bow thoush)

Outline of paper. Section 2will briedy review previous work.Section 3beains with an outline

of the detailed analvsis of vanishing errors due to Hochreiter (1931). 1t will then introduce a naive
approach to constant error backprop for didactic purposes,and highlight its problems concerning
information storage and retrieval .These problems will lead to the LSTM architecture as described
in section 4. Section Swill present numerous experiments and comparisons with competing
methods . L5TH outperforms them,and also learns to solve complex,artifcial tasks no other

recurrent net algorithm has solved.Section Gwill discuss LSTM' s limitations and advantages.The
aﬁpgndix contains a detailed description of the algorithm (A.1),and explicit error bow formulae

ZPREV 10US WORK

This section will focus on recurrent nets with time-varying inputs {as opposed to nets with stationary
inputs and ¥xpoint-based gradient calculations,e.q..&lmeida 1987,Pineda 1987).

Gradient-descent variants.The approaches of Elman (1933),Fahiman {1991),%illians

(1989}, Schmidhuber (1992a}),Pear Imutter {19897, and manv of the related algorithms in Pearlmutter’s
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For @,-, .. Where £,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get
S=Spec(R)=UX,\'U><xU

and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 7?7 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U= U U i X8 U,‘
which has a nonzero morphism we may assume that f; is of finite presentation over

S. We claim that Ox . is a scheme where x, 2, s"” € S’ such that Oy ,»» = O, . is

separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(z'/S")
and we win.

To prove study we see that F|y is a covering of A”, and 7T; is an object of Fx/s for
i > 0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M =1 ®spec(k) Os,s — ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S)‘}’;';I, (Sch/S) fpps

and

V =T(S.0) — (U, Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. =

The result for prove any open covering follows from the less of Example ?7. It may
replace S by X paces.étale Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim | X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex
Set(A) =T'(X,0x,04)-

When in this case of to show that Q@ — Cz,x 1is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU =[] . Ui be the scheme X over
S at the schemes X; — X and U = lim; X;.

i=1,...,
The following lemma surjective restrocomposes of this implies that F,, = F,, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fy5. Set T =
Ji CI.. Since I C I™ are nonzero over ig < p is a subset of Jy o © Ay works.

Lemma 0.3. In Situation 7?. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma 77 we see that

D(Ox:) = Ox(D)

where K is an F-algebra where 9§, is a scheme over S. O
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